Reversible Self-Actuated Thermo-Responsive Pore Membrane

نویسندگان

  • Younggeun Park
  • Maria Paz Gutierrez
  • Luke P. Lee
چکیده

Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimuli-responsive smart gating membranes.

Membranes are playing paramount roles in the sustainable development of myriad fields such as energy, environmental and resource management, and human health. However, the unalterable pore size and surface properties of traditional porous membranes restrict their efficient applications. The performances of traditional membranes will be weakened upon unavoidable membrane fouling, and they cannot...

متن کامل

Tunable microlens arrays actuated by various thermo-responsive hydrogel structures

We report on liquid-based tunable-focus microlens arrays made of a flexible polydimethylsiloxane (PDMS) polymer. Each microlens in the array is formed through an immiscible liquid–liquid interfacial meniscus. Here deionized water and silicone oil were used. The liquids were constrained in the PDMS structures fabricated through liquid-phase photopolymerization for molding and soft lithography. T...

متن کامل

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

Self-actuated, thermo-responsive hydrogel valves for lab on a chip.

An easy to fabricate, thermally-actuated, self-regulated hydrogel valve for flow control in pneumatically driven, microfluidic systems is described. This microvalve takes advantage of the properties of the hydrogel, poly(N-isopropylacrylamide), as well as the aqueous fluid itself to realize flow control. The valve was designed for use in a diagnostic system fabricated with polycarbonate and aim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016